
Wabo[®]ElastoFlex

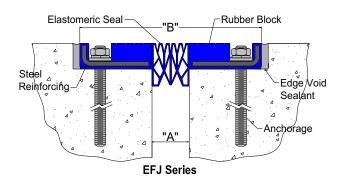
Bridge Series Continuous Membrane Sealing System

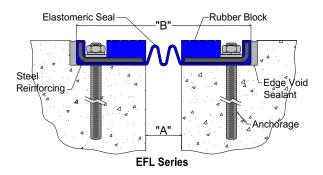
Features	Benefits
Non- Metallic	With the anchor blocks and membrane both produced from high quality elastomeric materials
Versatile	The membrane design allows the Wabo®ElastFlex system to handle any joint configuration incorporating directional changes and or skews.
Skid Resistant	Each anchor block is provided with molded surface grooves which allow for proper water drainage

DESCRIPTION:

The Wabo®ElastoFlex bridge series joint system features a continuous gland of fabric reinforced EPDM rubber mechanically locked by modular steel reinforced EPDM anchor blocks. Ends of each anchor block tongue and grooved together to ensure a positive connection and prevent uplift or separation. The membrane gland is installed continuous curb to curb. The EFL series utilizes a seal configuration that folds upward via its three preformed hinges allowing easy expulsion of debris and gravel. The EFJ series utilizes a seal configuration that is pedestrian friendly.

RECOMMENDED FOR:


- Sealing of joints in bridges
- New construction and stage construction rehabilitation projects
- Vertical applications and slab-to-wall conditions.


PACKAGING/COVERAGE:

- Elastomeric seals are supplied in continuous lengths.
- Anchor blocks supplied in standard 6-foot panels. Panels and pre-cut curb units are banded on wooden pallets for shipping.
- NP1 Edge Void Sealant is an elastomeric rubber compound used to seal the edge voids. Sealant is supplied in 9.8 oz. tubes.

TECHNICAL DATA:

Movement Table

Model	Joint Opening "A"					System Width "B"				
Number	Min.		Max.		Total		Min.		Max.	
Hambor	in	mm	in	mm	in	mm	in	mm	in	mm
EFL-400	0.500	13	4.500	115	4.0	102	8.500	216	12.500	319
EFJ-225	1.000	25	2.250	57	1.3	32	9.000	229	10.250	260
EFJ-400	1.500	38	4.000	102	2.5	64	9.500	241	12.000	305
EFJ-600	2.000	51	6.000	152	4.0	102	10.000	254	14.000	356

Specify SS for Slow Speed and HS for High Speed Applications

Consult your WBA Representative with your special design requirements

watsonbowmanacme.com

PHYSICAL PROPERTIES:

The steel angles imbedded in the molded anchor blocks are formed from ASTM A36 steel. The rubber anchor blocks are produced from EPDM rubber. The EFL elastomeric seal is produced from EPDM rubber. The EFJ elastomeric seals are produced from Santoprene rubber.

Requirements shown below reflect test results taken immediately following compound mixing. Results may vary and are not indicative of product performance if specimens are skived from finished, molded parts.

EPDM Rubber

PHYSICAL PROPERTY	ASTM TEST METHOD	REQUIREMENTS	
Tensile Strength, min	D-412	1500 psi	
Elongation at Break, min	D-412	250%	
Hardness, Shore A	D-2240	65 +/- 5	
Heat Resistance (70hrs@212?F) Tensile Strength, max Elongation, max Hardness, max	D-573	25% 25% 10 pts	
Oil Resistance (70 hrs@212?F) Volume, max	D-471	120%	
Ozone Resistance 50 pphm for 72 hrs @ 104?F	D-1149	100 rating	
Compression Set 22 hrs @ 212F, max	D-395	50%	

Santoprene Rubber

PHYSICAL PROPERTY	ASTM TEST METHOD	REQUIREMENTS	
Tensile Strength, min	D-412	850 psi	
Elongation at Break, min	D-412	300%	
Hardness, Shore A	D-2240	67 +/- 3	
100% Modulus, min	D-412	435 psi	
Tear Strength, avg	D-624	140 lbs/in	
Tension Set, avg	D-412	10%	
Compression Set, max			
22 hrs @ 73?F	D-395	35%	
70 hrs @ 257?F		45%	
Ozone Resistance	D-1171	No cracks	
UV Resistance	SAE J1960	Pass	
Staining Resistance	D-925	No staining	
Brittle Point	D-746	-81?F	

APPLICATION:

INSTALLATION SUMMARY:

- Newly placed concrete The concrete joint interface must be dray and clean (free of dirt, coatings, rust, greases, oil and other contaminants), sound and durable.
 New concrete must be cured (minimum of 14 days).
- Aged Concrete The blockout should be of sound concrete. Loose, contaminated, weak, spalled, deteriorated concrete must be removed to sound concrete and repaired prior to placement of the expansion joint system. Any spalling, voids or structural cracking at the joint interface must be repaired.
- Prepare blockout to proper dimensions and grade. The bottom of the blockout shall be parallel with the plane of the roadway (true and flat).
- Ensure anchors are installed at right angles to the bottom of the blockout, at the correct spacing.
- Position the elastomeric gland in the blockout, following installation guidelines for curb upturns.
- Position the anchor blocks starting at the curbs.
- Field cut one section for exact fit.
- Tighten the anchors to the required torque. Retorque after approximately one hour.
- Fill bolt hole cavities and edge voids with sealant.

FOR BEST RESULTS:

- Install when concrete substrate is clean, sound, dry, and cured (14 day minimum).
- Do not install if the joint's anticipated movement will exceed the system's movement range.
- Protect the work area with appropriate plastic sheeting.
- Minimize splice points by installing seals in longest possible continuous lengths.
- Do not allow any of the components to freeze prior to installation. Store all components out of direct sunlight in a clean, dry location between 50°F (10°C) and 90°F (32°C).
- Shelf life of chemical components is 1 year.
- Periodically inspect the applied material and repair localized areas as needed.
 Consult a Watson Bowman Acme representative for additional information.
- Make certain the most current version of the product data sheet is being used. Please consult the website (<u>www.watsonbowmanacme.com</u>) or contact a customer service representative.
- Proper application is the responsibility of the user. Field visits by Watson Bowman Acme personnel are for the purpose of making technical recommendations only and not for supervising or providing quality control on the jobsite.

ADDITIONAL REQUIREMENTS/EQUIPMENT:

- Blockout base must be parallel with plane of riding surface. Sandblast blockout surfaces prior to installation.
- Torque wrench to tighten anchors.
- Pry bar to more or position panels.

RELATED DOCUMENTS:

- Material Safety Data Sheets
- WaboElastoFlex Specifications
- WaboElastoFlex Installation Procedure
- WaboElastoFlex Sales Drawings

LIMITED WARRANTY:

Watson Bowman Acme Corp. warrants that this product conforms to its current applicable specifications. WATSON BOWMAN ACME CORP. MAKES NO OT.HER WARRANTY, EXPRESS OR IMPLIED, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE. The sole and exclusive remedy of Purchaser for any claim concerning this product, including, but not limited to, claims alleging breach of warranty, negligence, strict liability or otherwise, is the replacement of product or refund of the purchase price, at the sole option of Watson Bowman Acme Corp. Any claims concerning this product shall be submitted in writing within one year of the delivery date of this product to Purchaser and any claims not presented within that period are waived by Purchaser. IN NO EVENT SHALL WATSON BOWMAN ACME CORP. BE LIABLE FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL (INCLUDES LOSS OF PROFITS) OR PUNITIVE DAMAGES. Other warranties may be available when the product is installed by a factory trained installer. Contact your local Watson Bowman Acme representative for details. The data expressed herein is true and accurate to the best of our knowledge at the time published; it is, however, subject to change without notice.

WaboElastoFlex Bridge 0321